
iDocument: Using Ontologies for Extracting and
Annotating Information from Unstructured Text

Benjamin Adrian1, Jörn Hees2, Ludger van Elst1, and Andreas Dengel1,2

1 Knowledge Management Department, DFKI,
Kaiserslautern, Germany

2 CS Department, University of Kaiserslautern
Kaiserslautern, Germany

firstname.lastname@dfki.de

Abstract. Due to the huge amount of text data in the WWW, annotat-
ing unstructured text with semantic markup is a crucial topic in Semantic
Web research. This work formally analyzes the incorporation of domain
ontologies into information extraction tasks in iDocument. Ontology-
based information extraction exploits domain ontologies with formalized
and structured domain knowledge for extracting domain-relevant infor-
mation from un-annotated and unstructured text. iDocument provides
a pipeline architecture, an extraction template interface and the ability
of exchanging domain ontologies for performing information extraction
tasks. This work outlines iDocument’s ontology-based architecture, the
use of SPARQL queries as extraction templates and an evaluation of
iDocument in an automatic document annotation scenario.

1 Introduction

Automatically or semi-automatically extracting structured information from un-
structured text is an important step towards text understanding. Existing in-
formation extraction (IE) systems are mostly specialized in limited domains. A
scenario where end users may rapidly query a text base with ad hoc queries3 is
nearly impossible to implement with existing IE technologies. (e.g., Select scien-
tific conferences in 2009 and their deadlines for paper submissions with a focus
on information extraction.)

Knowledge engineering approaches (e.g., Textmarker [1]) suffer from the
knowledge engineering bottleneck which means an expert has to provide and
maintain a rule base. Existing machine learning approaches avoid these ef-
forts. Instead they require previously annotated training corpora with expensive
ground truth data [2].

Thus, common IE systems do not provide scalability, adaptability, and main-
tainability for being used in cost saving and generic user scenarios.
3 According to Ralph Grishman (2002) about the project Proteus: Our long-term goal

is to build systems that automatically find the information you’re looking for, pick
out the most useful bits, and present it in your preferred language, at the right level
of detail.



In order to overcome these shortcomings, we present iDocument, a flexible
ontology-based information extraction (OBIE) system. It uses terminology and
instance knowledge of domain ontologies that are written in RDF/S [3]. Ex-
changing a domain ontology customizes the system on a completely new domain
of interest. Instead of using expensive IE template definition specifications, iDoc-
ument provides a generic and standardized IE template interface based on the
syntax of the RDF query language SPARQL. Thus, extraction templates can be
expressed by SPARQLing the ontology’s RDFS scheme. As result, iDocument
generates an RDF graph that contains RDF triples which were extracted from
given text documents and comply with the SPARQL template.

The structure of this paper is as follows: Related work on using ontologies
in information extraction is summarized in Section 2. Next, Section 3 formally
describes, how RDFS ontologies may be used in IE tasks. Section 4 shows iDoc-
ument’s architecture, extraction pipeline, and template population algorithm. In
Section 5, an evaluation presents the quality of annotated instances and facts.

2 Related Work

iDocument extends basic IE principles by using ontologies. Comparable OBIE
systems are GATE [4], SOBA [5] or SummIt-BMT [6]. In difference to these,
iDocument does not use the ontology as simple input gazetteer that is a plain
list of relevant labels but as model for semantic analysis such as instance dis-
ambiguation and discourse analysis. The technique of using existing domain on-
tologies as input for information extraction tasks and extraction results as base
for ontology population was first presented by Empley in [7] by using relational
database technologies. Sintek et al. [8] applied a similar scenario on Semantic
Web ontologies. A bootstrapping approach was presented by Maedche, Neu-
mann, and Staab in [9] by learning new domain ontologies semi-automatically
and populating these in a final step. The previously mentioned OBIE systems
do not support any template mechanisms. In the Message Understanding Con-
ference series (MUC), extraction templates were defined by using named slots
that were annotated with constraints and rules [10]. These template specifica-
tions tended to be very long and complex and were hard to create by system
users. Hobbs and Israel claimed in [11] that template design is related to ontol-
ogy engineering. Following this assumption, the use of extraction ontologies as
sort of template for IE is presented by Labský in [12]. Here the entire ontology
specifies those information elements (e.g., fields and entities) that should be ex-
tracted from text. In iDocument, SPARQL queries that are formulated by using
the ontology’s RDFS vocabulary [3] serve as technique for expressing extraction
templates.

3 Domain Ontologies in Information Extraction Tasks

“In common sense, a domain ontology (or domain-specific ontology) models a
specific domain, or part of the world. It represents the particular meanings of



terms as they apply to that domain.”4 Domains may be for example: the Olympic
Summer Games 2004, the Knowledge Management Department at DFKI, or a
Personal Information Model [13] inside a Semantic Desktop.

By using the RDFS [3] vocabulary the main components of a domain ontology
O can be defined as O(HC , HP , I, S, A):

Hierarchy of classes (HC) A resource c can be defined as rdfs:class. A
class c1 may specialize class c2 by expressing rdfs:subClassOf(c1, c2). The
transitive closure of all rdfs:subClassOf expressions builds the class hier-
archy HC .

Hierarchy of properties (Hp) A property p expresses a semantic relation be-
tween two classes p(c1, c2). A property p1 may specialize property p2 if
rdfs:subPropertyOf(p1, p2). The transitive closure of rdfs:subPropertyOf
expressions builds the hierarchy of properties HP .
Object Properties (PO) A property p ∈ PO is called object property if

rdfs:range is defined as rdfs:range(p, c) with c ∈ HC\rdfs:LiteralT ,
where rdfs:LiteralT denotes the reflexive, transitive subhierarchy of
class rdfs:Literal.

Datatype Properties (PDT ) A property p ∈ PDT is a datatype property
if rdfs:range is defined as rdfs:range(p, rdfs:Literal).

Instances (I) Instances are resources i with an rdf:type property that is de-
fined as rdf:type(i, c) with c ∈ HC \ {rdfs:LiteralT }.

Symbols (S) symbols are resources s with an rdf:type property that is defined
as rdf:type(s, c) with rdfs:subClassOf(c, rdfs:Literal).

Assertions (A) Assertions are triple expressions in the form of p(i, r) with
p ∈ HP and i, r ∈ HC ∪ I ∪ S.

Based on such an ontology, it is possible to define four major tasks for ontology-
based information extraction.

Symbol Recognition If a similarity function sim(s, se) decides that a phrase
s inside a text matches an existing symbol se ∈ S, s is recognized as symbol.
Each datatype property p ∈ PDT inside a valid assertion p(i, se) ∈ A about
an instance i ∈ I is called the symbol’s type.
– If sim(s, se) bases on content similarity, s is called content symbol and

denoted as sc. Each content symbol sc has to exist in S.
(e.g., assuming foaf:mbox(urn:BenjaminAdrian, “adrian@dfki.de”) ∈ A,
all occurrences of “adrian@dfki.de” in text will be recognized as content
symbol with type foaf:mbox)
In traditional IE systems this task is called Named Entity Recognition.

– If sim(s, se) bases on structural similarity, s is called structure symbol
and denoted as ss.
(e.g., assuming foaf:mbox(urn:BenjaminAdrian, “adrian@dfki.de”) ∈ A,
the occurrence of “dengel@dfki.de” in text will be recognized as structure
symbol with type foaf:mbox).
In traditional IE systems this task is called Structured Entity Recognition.

4 as described in Wikipedia, online available at http://en.wikipedia.org/w/index.

php?title=Ontology_(information_science)&oldid=284405492, 2009-04-21



Instance Recognition The unification of recognized content symbols to exist-
ing instances iexist is called instance recognition. For a content symbol sc,
iexist is a recognized instance if an assertion p(iexist, sc) ∈ A exists where
at least one type of sc matches p. Thus it is possible that for single content
symbols more than one recognized instance exist (e.g., content symbols of
type foaf:firstName).
In case of a structure symbol ss, instance recognition may either be solved
with unification that adds a new assertion p(ie, ss) /∈ A to an existing in-
stance ie ∈ I or as instantiation of a new instance inew /∈ I with an assertion
p(inew, ss) /∈ A, with p is a type of symbol ss.
Traditional IE systems call this task Template Unification or Template Merge.

Fact Recognition Assume that PQ ⊆ HP is a set of queried properties inside
the extraction template Q. Recognized facts are assertions of type p(i1, i2)
or p(i1, s) with i1, i2 ∈ I, p ∈ PQ, s ∈ S. If all components i1, i2 or s of a
recognized fact were recognized in text in the previous steps and the recog-
nized fact is not an existing assertion fr /∈ A, the fact is called extracted fact.
Otherwise if fr ∈ A it is called completed fact as the template is completed
with known assertions of the domain ontology.
Traditional IE systems call this task Fact Extraction.

Template Population A given extraction template Q is populated with recog-
nized facts. It is possible that a single template is populated with multiple
populations. (e.g., In case of “Select scientific conferences in 2009 and their
deadlines for paper submissions with a focus on information extraction”, each
recognized conference with its paper due forms a single populated template.)
Traditional IE systems call this task Scenario Extraction.

The following section describes the architecture, IE task implementations, and
extraction templates of the OBIE system iDocument.

4 The OBIE system iDocument

As outlined in Figure 1, iDocument’s architecture comprises the following com-
ponents: a domain ontology, a text collection, SPARQL templates, an OBIE
pipeline, and finally results in populated templates. A text collection contains
content that is relevant for the current question and domain of interest.

4.1 Alignment Metadata

For using a domain ontology in iDocument, relevant parts for extraction purpose
have to be annotated with the MOBIE vocabulary5 (Metadata for OBIE) in a
mapping file:

mobie:Entity For using a class of instances for instance recognition purpose, it
has to be assigned to mobie:Entity by using rdfs:subClassOf. (e.g., foaf:Person
rdfs:subClassOf mobie:Entity)

5 refer to http://ontologies.opendfki.de/repos/ontologies/obie/mobie



SPARQL
template

ontology­based
information extraction pipeline

result as 
RDF graph

SELECT
* WHERE 
{ … }

  user ontology text

Fig. 1. OBIE scenario

mobie:symbol For using a datatype property for symbol recognition purpose,
it has to be assigned to mobie:symbol by using rdfs:subPropertyOf. (e.g.,
foaf:firstName rdfs:subPropertyOf mobie:symbol)

mobie:relates For using an object property for fact recognition purpose, it has
to be assigned to mobie:relates by using rdfs:subPropertyOf. (e.g., foaf:knows
rdfs:subPropertyOf mobie:relates)

4.2 Extraction Templates

iDocument provides an extraction template interface that processes templates
written in SPARQL. Users may write templates by using the ontology’s RDFS
vocabulary. (e.g., SELECT * WHERE {?person rdf:type foaf:Person. ?person
foaf:member ?org. ?org rdf:type foaf:Organisation.} extracts persons and organ-
isations and facts about memberships from text.)

4.3 Template Population

The algorithm for populating templates follows a most constrained variable
heuristic. A SPARQL query can be represented as forest of join expressions.
The algorithm transforms the forest into a list of paths from root to leaf and
sorts this list in a descending order by the length of paths. Iteratively, it removes
the longest path from the list and tries to populate it with recognized facts.

4.4 Extraction Pipeline

iDocument is built upon an OBIE pipeline consisting of six OBIE tasks. The
first two are standard text based analyzes for instance (i) Normalization and
(ii) Segmentation. Succeeding tasks are OBIE tasks as described in Section 3,
namely (iii) Symbol Recognition, (iv) Instance Recognition, (v) Fact Recognition,
and (vi) Template Population.



This pipeline was implemented with Believing Finite-State Cascades [14].
Each task is based on text or results of preceding tasks and produces weighted
hypotheses. Normalization transforms a text document to RDF representation
that consists of its plain text and existing metadata such as author, date, title.
Segmentation partitions text passages into paragraphs, sentences, or tokens.

Results of the OBIE pipeline are transcribed in RDF graphs. These may be
visualized and approved by users and/or be handed to specific applications. In
the current state of implementation, the focus of iDocument is set on annotating
text with existing instances and facts from domain ontologies. Upcoming versions
will enhance its extraction functionalities.

5 Evaluation

The evaluation of iDocument was done by analyzing the quality of extracted
results of instance and fact recognition tasks with precision and recall. As pop-
ulating and maintaining domain ontologies is burdensome, the evaluation was
designed to show how the degree of extraction quality correlates with the amount
of assertions inside the domain ontology. As corpus data, the DFKI/OCAS 20086

corpus was used. It contains a domain ontology about the Olympic Summer
games 2004 and fifty documents that were annotated with symbols, instances
and facts [15]. In an adaption of leave-one-out cross validation, one document
was taken as candidate, the remaining documents with their annotations built
the assertions of the domain ontology. For analyzing the learning behaviour, as-
sertions of the domain ontology were divided into two parts, i.e. training set and
test set. The impact of existing knowledge about a single document’s content or
knowledge about other documents in the same domain was analyzed by creating
four types of training sets, i.e.:

X-Doc, 0-Ont Training set contains just a ratio of x % of the currently ana-
lyzed document’s annotations.

0-Doc, x-Ont Training set just contains a ratio of x % of the all other docu-
ments’ annotations, except annotations of the currently analyzed document.

x-Doc, x-Ont Training set contains a ratio of x % of the all existing documents’
annotations.

x-Doc, 100-Onto Training set contains a ratio of 100 % of the all other docu-
ments’ annotations and a ratio of x % of the currently analyzed document’s
annotations.

The training sets were used as assertions inside the domain ontology. During
each test run the ratio x was increased from 0 % to 100 % in steps of 10 %. The
test set always contained 100 % of annotations about the currently analyzed
document. The evaluation task was to check the degree of extracted instances
and facts. Figure 2 shows results of the instance recognition task for instances of
type (Person, Nation, Sport, and Discipline) in the upper row. At left it shows

6 http://idocument.opendfki.de/wiki/Evaluation/Corpus/OlympicGames2004



Tabelle3

Seite 1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Instance Recognition

X-Doc, 100-Onto X-Doc, X-Ont X-Doc, 0-Ont 0-Doc, X-Ont

Degree of Background Knowledge

R
ec

a
ll 

V
al

ue

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Instance Recognition

X-Doc, 100-Onto X-Doc, X-Ont X-Doc, 0-Ont 0-Doc, X-Ont

Degree of Background Knowledge

P
re

ci
si

on
 V

a
lu

e
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Fact Recognition

X-Doc, 100-Onto X-Doc, X-Ont X-Doc, 0-Ont 0-Doc, X-Ont

Degree Background Knowledge

R
ec

a
ll 

V
a

lu
e

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Fact Recognition

X-Doc, 100-Onto X-Doc, X-Ont X-Doc, 0-Ont 0-Doc, X-Ont

Degree Background Knowledge

P
re

ci
si

on
 V

al
ue

Fig. 2. Recall and precision progressions for (i) instance recognition as shown on top
and (ii) fact recognition as shown on bottom

the progression of recall regarding an increasing amount of assertions inside the
domain ontology. The logarithmic increase can be explained by the existence of
multiple symbols per instance inside the ontology that were recognized during
symbol recognition. If the ontology contains all relevant instances and facts that
occur inside a test document, iDocument is able to recognize these with 100 %
recall and precision. The recall progression of recognizing facts about a person’s
nationality follows a linear behavior as shown in the lower row. The step from
90 % to 100 % backround knowledge can be explained by rounding double values,
as the amount of these facts per document were often below ten. The precision of
recognized facts is always at 100 %, because iDocument only annotated existing
facts that are asserted inside the domain ontology.

In both cases instance and fact recognition, the progression of an ontology
with assertions shows, that precision does not decrease if the ontology knows
more than just the document annotations.

6 Conclusion and Outlook

This work described the use of RDF/S domain ontologies for information extrac-
tion and annotation. The OBIE system iDocument was presented, including a
pipeline-based architecture of OBIE tasks and a SPARQL-based template inter-
face for defining which information to extract from text. The evaluation showed



that iDocument retrieved instances and facts in text if they exist inside a domain
ontology. Future and ongoing efforts in iDocument are spent on increasing the
ability of extracting new information from text.
This work was financed by the BMBF project Perspecting (Grant 01IW08002).

References

1. Atzmüller, M., Klügl, P., Puppe, F.: Rule-Based Information Extraction for Struc-
tured Data Acquisition using TextMarker. In: Proc. LWA-2008 (Special Track on
Knowledge Discovery and Machine Learning). (2008)

2. Ireson, N., Ciravegna, F., Califf, M.E., Freitag, D., Kushmerick, N., Lavelli, A.:
Evaluating Machine Learning for Information Extraction. In Raedt, L.D., Wrobel,
S., eds.: ICML. Volume 119 of ACM Int. Conf. Proc. Series., ACM (2005) 345–352

3. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF
Schema. W3C recommendation, World Wide Web Consortium (2004)

4. Bontcheva, K., Tablan, V., Maynard, D., Cunningham, H.: Evolving GATE to
meet new challenges in language engineering. JNLE 10(3-4) (2004) 349–373

5. Buitelaar, P., Cimiano, P., Frank, A., Hartung, M., Racioppa, S.: Ontology-based
Information Extraction and Integration from Heterogeneous Data Sources. Int.
Journal of Human-Computer Studies (11) (2008) 759–788

6. Endres-Niggemeyer, B., Jauris-Heipke, S., Pinsky, M., Ulbricht, U.: Wissen gewin-
nen durch Wissen: Ontologiebasierte Informationsextraktion. Information - Wis-
senschaft & Praxis 57(1) (2006) 301–308

7. Embley, D.W., Campbell, D.M., Smith, R.D., Liddle, S.W.: Ontology-based Ex-
traction and Structuring of Information from Data-Rich Unstructured Documents.
In: CIKM ’98: Proc. of the 7th Int. Conf. on Information and Knowledge Manage-
ment, New York, NY, USA, ACM (1998) 52–59

8. Sintek, M., Junker, M., van Elst, L., Abecker, A.: Using Information Extraction
Rules for Extending Domain Ontologies. In: Workshop on Ontology Learning.
CEUR-WS.org (2001)

9. Maedche, A., Neumann, G., Staab, S.: Bootstrapping an Ontology-based Infor-
mation Extraction System. In Szczepaniak, P., Segovia, J., Kacprzyk, J., Zadeh,
L.A., eds.: Intelligent Exploration of the Web. Springer, Berlin (2002)

10. Grishman, R., Sundheim, B.: Design of the MUC-6 evaluation. In: Proc. of a
workshop held at Vienna, Virginia, Morristown, NJ, USA, Association for Com-
putational Linguistics (1996) 413–422

11. Hobbs, J., Israel, D.: Principles of Template Design. In: HLT ’94: Proc. of the
workshop on HLT, Morristown, NJ, USA, ACL (1994) 177–181

12. Labský, M., Svátek, V., Nekvasil, M., Rak, D.: The Ex Project: Web Information
Extraction using Extraction Ontologies. In: Proc. Workshop on Prior Conceptual
Knowledge in Machine Learning and Knowledge Discovery (PriCKL’07). (2007)

13. Sauermann, L., van Elst, L., Dengel, A.: PIMO - a Framework for Representing
Personal Information Models. In: Proc. of I-Semantics’ 07, JUCS (2007) 270–277

14. Adrian, B., Dengel, A.: Believing Finite-State cascades in Knowledge-based Infor-
mation Extraction. In: KI 2008: Advances in Artificial Intelligence. Volume 5243
of Lecture Notes in Computer Science., Springer (2008) 152–159

15. Grothkast, A., Adrian, B., Schumacher, K., Dengel, A.: OCAS: Ontology-Based
Corpus and Annotation Scheme. In: Proc. of the HLIE Workshop 2008, ECML
PKDD (2008) 25–35


